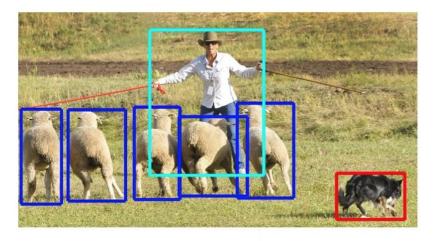
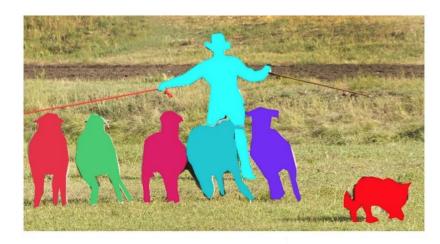
Im2Flow: Motion Hallucination from Static Images for Action Recognition

RUOHAN GAO

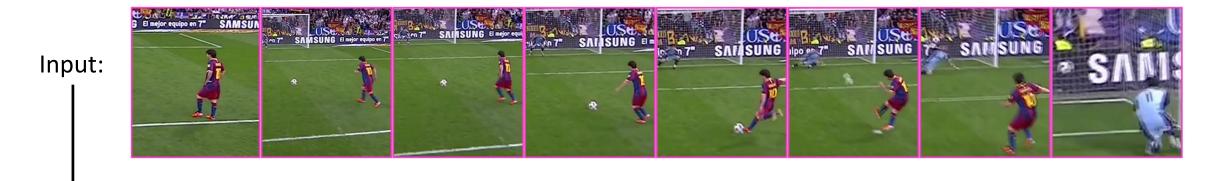
BO XIONG


KRISTEN GRAUMAN


Image Classification

Semantic Segmentation

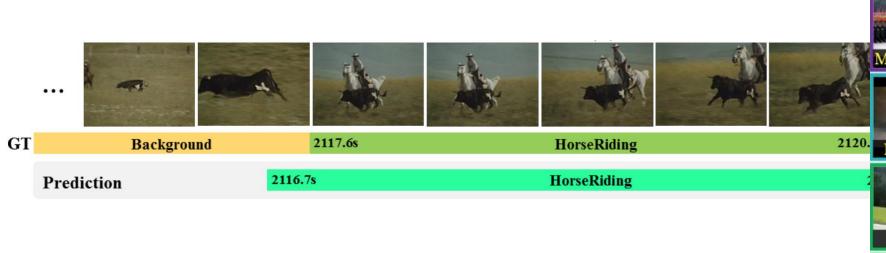
Object Detection/Localization



Instance Segmentation

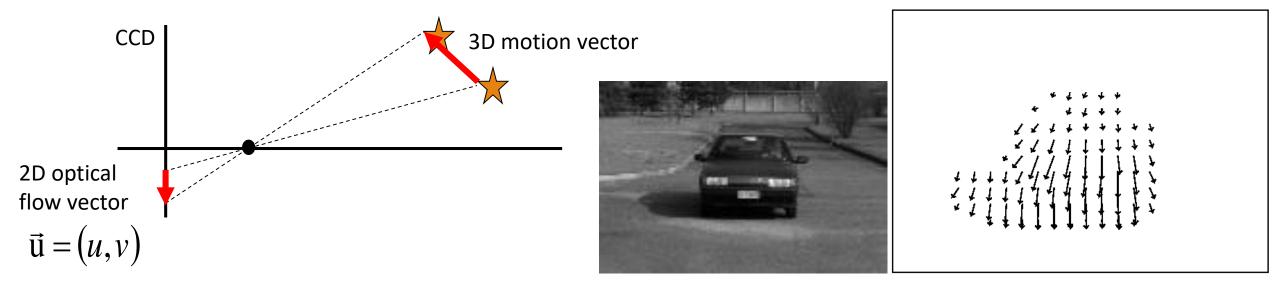
Action Recognition? What is an action?

Problem: Action Recognition

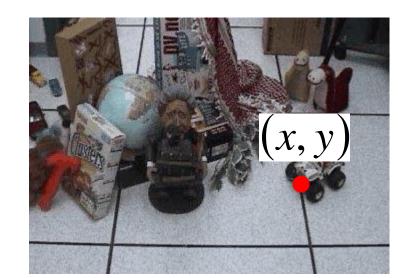

- Action is the most elementary human-surrounding interaction with a meaning.
- Multi-classification Problem
 - Input: Video or Image
 - Output: Labels (categories of actions)
 - Human Action Recognition

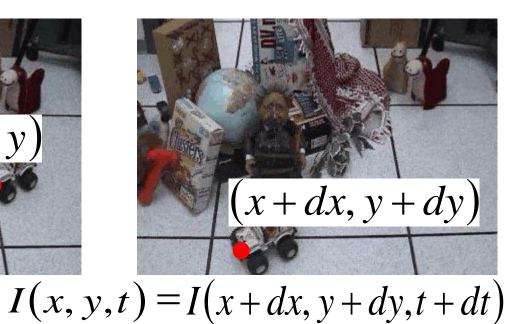
Output: Actioning Actioning Actioning

Video-based Action Recognition


- Classify human actions in video clips
- Simplification: Trimmed Video with action lables
 - Datasets: UCF101; HMDB51; MSR Action 3D;
- Temporal Action Detection/Localization: Untrimmed Video

Video-based Action Recognition

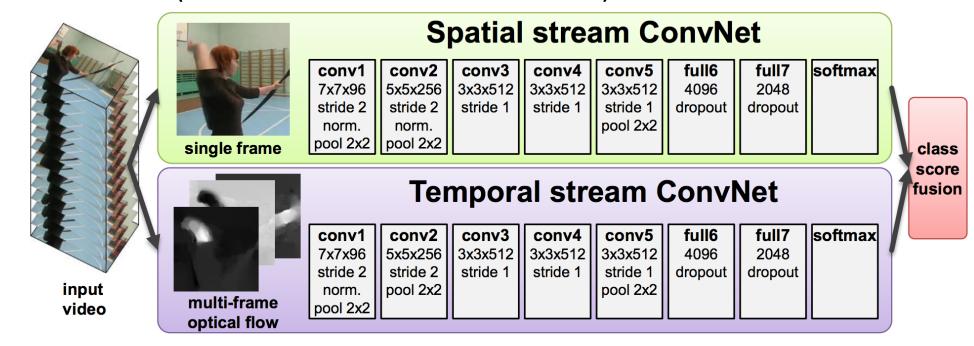

- Rich Temporal Information + Motion Information (Optical Flow)
- Motion field = real 3D scene motion
- Optical flow = projection of motion field, the apparent motion of brightness patterns
 - 2D vector represents Instantaneous velocity



Pierre Kornprobst's Demo

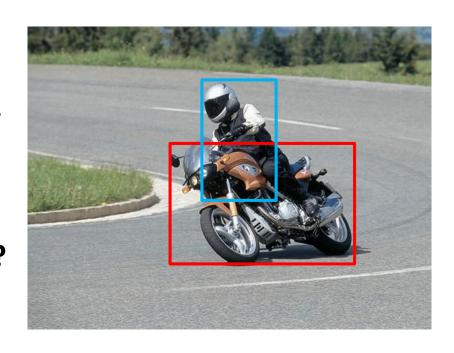
Optical Flow Estimation

- Brightness constant
- Motion is tiny
- Spatial consistency



Optical Flow and Action Recognition

- iDT(improved dense trajectories)
 - DT: OF > trajectories (HOF, HOG, MBH, trajectory) > FV (Fisher Vector) > SVM
 - iDT: matching using optical flow and SURF
- Two Stream Network (UCF101-88.0%, HMDB51-59.4%)



Why Optical Flow needed for Action Recognition?

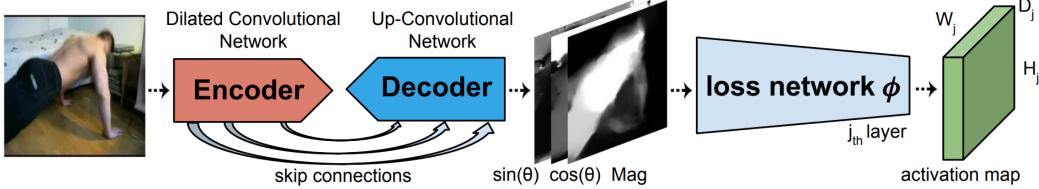
- On the Integration of Optical Flow and Action Recognition
 - Invariant to appearance, even when the flow vectors are inaccurate.

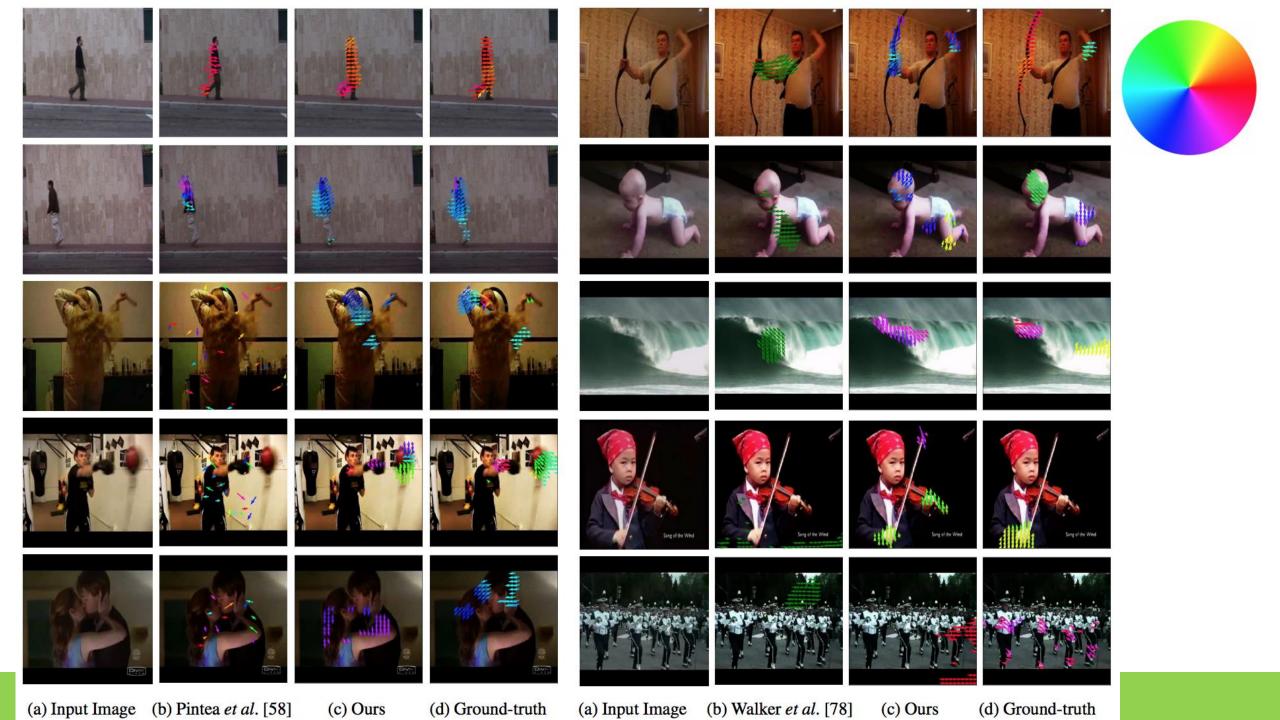
Static Image Action Recognition

- Representation based solution
 - high-level cues: human body or body parts, objects, human-object interactions, and scene context
- Big Issue!
 - No Temporal information? No Motion information?

Solution: Motion Hallucination

- Train a U-Net (adapted) on Youtube data to learn motion (static frame > 5 predicted OFs)
- Losses: a pixel error loss and a motion content loss $L = L_{pixel} + \lambda L_{content}^{\phi,j}$
- two-stream CNN architecture



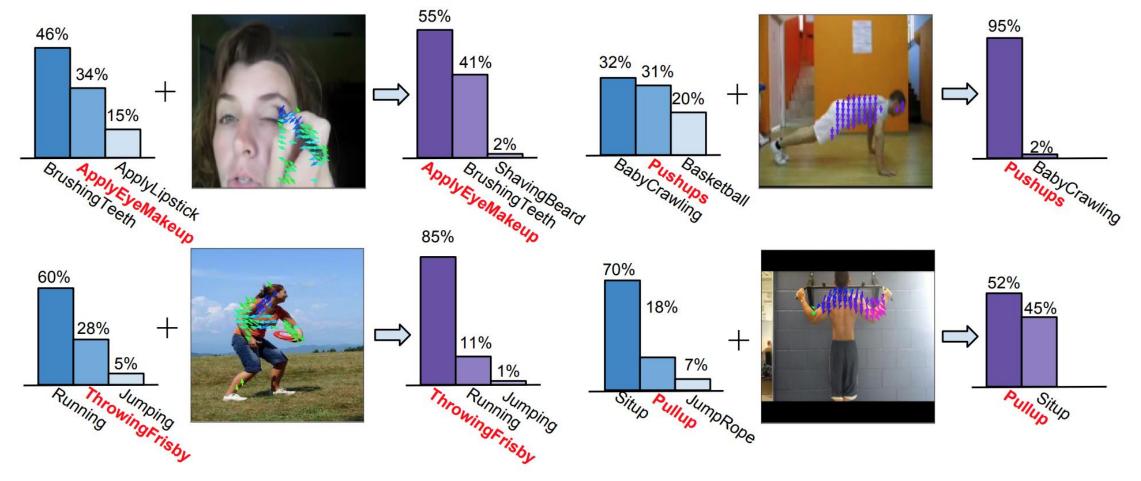

Figure 2. The network architecture of our Im2Flow framework. The network is an encoder-decoder that takes a static image as input and generates the corresponding 3-channel flow map \mathcal{F} as output. Our training objective is a combination of the L_2 loss in the pixel space and in the deep feature space. A motion content loss network encourages the predicted flow image to preserve high-level motion features.

Flow Prediction

- 3 datasets: UCF-101, HMDB-51, and Weizmann.
- Evaluation metrics:
 - End-Point-Error (EPE) $\sqrt{(u_0 u_1)^2 + (v_0 v_1)^2}$
 - Direction Similarity (DS)
 - Orientation Similarity (OS)

UCF-101	EPE↓	EPE-Canny	EPE-FG	DS ↑	DS-Canny	DS-FG	OS ↑	OS-Canny	OS-FG
Pintea <i>et al</i> . [58]	2.401	2.699	3.233	-0.001	-0.002	-0.005	0.513	0.544	0.555
Walker <i>et al</i> . [78]	2.391	2.696	3.139	0.003	0.001	0.014	0.661	0.673	0.662
Nearest Neighbor	3.123	3.234	3.998	-0.002	-0.001	-0.023	0.652	0.651	0.659
Ours	2.210	2.533	2.936	0.143	0.135	0.137	0.699	0.692	0.696

Quantitative results


Action Recognition

- 3 static-image datasets (video datasets):
 UCF-101, HMDB-51, Penn Action
- 3 static-image action benchmarks:
 Willow, Stanford10, PASCAL2012
 Actions

- 4 Baselines
 - Appearance Stream
 - Motion Stream (Ground-truth)
 - Motion Stream (Walker)
 - Appearance + Appearance

•	YUP++	Dynamic	Scenes
---	-------	---------	--------

		UCF-static	HMDB-static	PennAction	Willow	Stanford10	PASCAL2012
	Appearance Stream	63.6	35.1	73.1	65.1	81.3	65.0
Motion Stream	Motion Stream (Walker et al. [78])	*14.3	4.96	21.2	18.8	19.0	15.9
	Motion Stream (Ours-UCF)	-	13.9	51.0	35.7	46.4	32.5
	Motion Stream (Ours-HMDB)	24.1	-	42.4	30.6	42.2	30.1
	Motion Stream (Ours-UCF+HMDB)	-	-	51.1	35.9	48.4	32.7
M	→ Motion Stream (Ground-truth Motion)	38.7	20.0	52.4	-	-	-
	Appearance + Appearance	64.0	35.5	73.4	65.8	81.3	65.1
ream	Appearance + Motion (Walker et al. [78])	*64.5	35.9	73.1	65.9	81.5	65.0
	Appearance + Motion (Ours-UCF)	-	37.1	74.5	67.4	82.1	66.0
-St	Appearance + Motion (Ours-HMDB)	65.5	-	74.3	67.1	81.9	65.6
Two	Appearance + Motion (Ours-UCF+HMDB)	-	-	74. 5	67.5	82.3	66.1
	→ Appearance + Motion (Ground-truth Motion)	68.1	39.5	77.4	-	-	-

inferred motion can help static image action recognition

	Accuracy	mAP
Appearance	74.3	79.3
Ground-truth Motion	55.5	62.0
Inferred Motion	30.0	37.0
Appearance + Appearance	75.2	79.8
Appearance + Inferred Motion	78.2	82.3
Appearance + Ground-truth Motion	79.6	83.6

Static-image action recognition results (in %) on the static-YUP++ dataset

	mAP (%)
Delaitre <i>et al</i> . [6]	59.6
Sharma <i>et al</i> . [65]	67.6
Khan <i>et al</i> . [41]	68.0
Zhang <i>et al</i> . [90]	77.0
Liang <i>et al</i> . [51]	80.4
Mettes <i>et al</i> . [57]	81.7
Ours (AlexNet as base network)	74.0
Ours (VGG-16 as base network)	87.2
Ours (ResNet-50 as base network)	90.5

Comparison to other recognition models on Willow

Conclusion

- Approach: hallucinate the motion from static image and use it as an auxiliary cue for action recognition
- state-of-the-art performance on optical flow prediction from an individual image
- Standard two-stream network to enhance recognition of actions and dynamic scenes by a good margin