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Background

What are the applications?
*  Network monitoring and traffic engineering
* Business: credit card transaction flows
* Telecommunication call records

Challenges?

* Infinite length
*  Concept drift

Let {(X;,y:)}:2, be a labeled time series where X, € RY and y, € Z! (classification)
or y; € R! (prediction). As time moves on, the Concept Drift is defined as the
scenario when the underlying distribution that generates labeled instances changes over
time. Formally, the Concept Drift occurs when the joint distribution p(X;, y;) changes.
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Previous works and general framework

*  Drift Detection Method (DDM) Gams, Joao, Pedro

Medas, Gladys Castillo,
and Pedro Rodrigues.
"Learning with drift
detection." In Brazilian
Symposium on Artificial

X; Intelligence, pp. 286-
295. Springer Berlin

)‘c new f Heidelberg, 2004.

* error monitor + hypothesis testing
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Hierarchical Hypothesis Testing (HLFR)
Framework

 Hierarchical Hypothesis Testing (HHT) framework

«  HHT features two layers of hypothesis test: Layer-I outputs
potential drift points, Layer-1I reduce false alarms

* Hierarchical Linear Four Rates (HLFR) is developed under
HHT framework

Hierarchical Hypothesis Testing
Architecture

[

]

7 )

Confirm Detection /
Restart the testing

Layer-Il Hypothesis
\ Testing /

Potential Detection
Information of drift

Given

Layer-I test Type-I error a4,
Layer-I test Type-II error £,
Layer-II test Type-I error a5,

Detection Layer-II test Type-1I error f3,.
Results /

then
Type-I error of HHT:

a = alaz
Type-II error of HHT:
B =p+ (1 —pB1)p;
=~ 1+ B2
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Hierarchical Linear Four Rates (HLFR)

Algorithm

» Layer-I test: Linear Four Rates (LFR) test

Predict

True

Ho: v, P(B.) =P (2.
Hy: 3.,P (B77) 2 P (B.7)

*x€ {tpr, tnr, ppv, npv}

geometrically weighted sum of
Bernoulli random variables

Monitor four rates (i.e., positive predictive rate, negative predictive
rate, true positive rate and true negative rate) associated with the
confusion matrix and ALARM loudly if there is any significant change.
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Hierarchical Linear Four Rates (HLFR)
Algorithm

» Layer-II test: permutation test
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Conclusions

* A novel Hierarchical Hypothesis Testing (HHT) framework is
developed for concept drift detection.

 Hierarchical Linear Four Rates (HLFR) is designed under
HHT framework

«  HLFR significantly outperforms benchmark approaches in
terms of accuracy, G-mean, recall, delay of detection.

* Perfect? No!
» Letus continue ...
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Concept drift detection 1n the
context of expensive labels:

methods and applications
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Recall the general framework

New data in
the stream to
* General framework be classified
*  “indicator” monitoring
+ hypothesis test Y
Relearn a M;, e.a
classifier if drift u;:; ;fjtrlfennt
¢ State Of the aI‘t Sioune classifier
* Supervised X
+ re-training strategy Jnew

* HLFR, STEPD, etc.

° UIlSllpeI'Vised A single indicator

. .. is evaluated and

+ active training strategy tracked.

« MD3, CDBD, etc. supervised indicator: classification error, confusion matrix, etc.
unsupervised indicator: margin density, classification score
divergence, etc.

»  Limitations and motivations

* Expensive labels --> Accurate detection with minimum labels

* Multi-class streaming data --> Explicit handle multi-class
scenario
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Our methods

* A novel Hierarchical Hypothesis Testing (HHT)
framework

HHT features two layers of hypothesis test: Layer-I outputs
potential drift points, Layer-II reduce false alarms

/ Hierarchical Hypothesis Testing \
Architecture

{ X}

Unsupervised
manner

Confirm Detection /
Restart the testing

Potential Detection /
Information of drift

>

Detection Results /

Classifier update

Labels request
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Our methods

* Method I: Hierarchical Hypothesis Testing with
classification uncertainty (HHT-CU)

* Layer-I: Uncertainty measurement+ sample mean test

*  Uncertainty u 1s defined as the £,distance between estimated posterior
p(¥:|X;) probability and estimated class label ¥;, 1.e.,
us = 19 —pe1Xo)ll

+ If the classifier is tested 1n a stationary environments, the estimated sample
uncertainty mean will not deviate too much from its previous value given a

new sample.
ot v s . Corollary 1.1 (Layer-I test of HHT-CU) [f X;, X5, ..., X,,,
Theorem 1 (Hoeffding’s inequality) Let X, Xs,..., X, be Xoni1, o Xovton be independent random variables with val-

independent random variables such that X; € [a;, b;], and let ues in the interval [a,b], and if X = %Z?:l X, and 7 =

X = 15" X, then fore > 0:
L e 53 s ST X, then for = > 0:
—2n“e
X — % = (b;—ai)2 _ _ _ _ —9n(ntm)e?

P{X —E(X) 2 e} < emmimeer, M P{X —Z—(E(X)-E(Z)Ze}<e nii? . (3)

where E denotes the expectation. Using this theorem, given . pra— .
a specific significance level «, the error £, can be computed By deﬁm“(jﬂ’ us € [0,/ 7%=, where K is the number
with: of classes. X denotes the classification uncertainty mov-
1 1 ing average before a cutoff point, and Z denotes the mov-
Ea = m In iy () ing average over the whole sequence. The rule to reject the

null hypothesis Hy : E(X) > E(Z) against the alternative

one H, : E(X) < E(Z) at the significance level av will be
Z — X > ¢&,, Where

14 K-1 m 1
=1/ In—. 4
c K - 2n(n+m) ' @)
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Our methods

* Method I: Hierarchical Hypothesis Testing with
classification uncertainty (HHT-CU)

* Layer-II: Permutation test for potential point T
*  Set A consists of N samples prior to T

A=[(Xr-n+1Yr-Nn+1) K7Nt2, Yr-N+2)s ) (X7, V7))
* Set B consists of N samples after T':

B = [(X7+1,Y741), X142, Y742)s oo, X748, Yr4n)]
*  Reject the null hypothesis if e4_,5 or ez_, 4 1s above the significant level of

estimated error distribution.
€4-p O €p4

A
[AY

-~

1. Random select N samples to
train, and test on remaining N

Merge samples ﬂ samples. H}
1 \
N

€B-4

2. Repeat for P times with

SetAUSetB ) P< (%)

3. Fit a distribution f
€1,€5,€3,...,€Ep

HO: false decision

€rrors  HA: true decision
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Our methods

* Method II: Hierarchical Hypothesis Testing with
Attribute-wise “Goodness of fit” (HHT-AG)

+ Layer-I: Attribute-wise Kolmogorov—Smirnov (KS) test for
P(x%)|?=1
*  The KS test can be used to test whether two underlying one-dimensional
probability distribution differ. In this case, the KS statistics 1s given by
Dpom = Squ|F1,n (x) — szm(x)l, where F, ,,(x) and F, ,,(x) are the
empirical distribution functions (estimation of CDF) of the first and
second set of examples respectively, and sup 1s the supremum function.

* The null hypothesis is rejected at level a if D,, ,,, > c(a) ’?:_—T;n with c(a) =

- (3)

e

Z s -’_,JLTJ_ lllustration of the one-dimensional Kolmogorov-
g ﬂi} Smirnov (KS) statistic. Red and blue lines each
o o M correspond to an empirical distribution function,
% 04 r_'f{iJ and the black arrow is the two-sample KS statistic.
3 02
-
o 2 2 4

xXo
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Our methods

* Method II: Hierarchical Hypothesis Testing with
Attribute-wise “Goodness of fit” (HHT-AG)

* Layer-II: Two-dimensional Attribute-wise Kolmogorov-
Smirnov (KS) test for p(X, J/t)|?=1
* Peacock, 1983 [1] proposed 2D KS test for Astronomy
applications.
* We apply it on our Layer-II test.

* Peacock’s test demands partitioning the n points in 4n2 quadrants
and then computing the maximum absolute difference between
cumulative distribution functions in all quadrants.

[1] Peacock, J. A. "Two-dimensional goodness-of-fit testing in astronomy."

Monthly Notices of the Royal Astronomical Society, vol. 202, no. 3, pp: 615-627, 1983.
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*  Public available data

Results

* UG-2C-2D: Two Bi-dimensional unimodal Gaussian Classes
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Real applications

* Analysis of encrypted wireless video stream

Mobile video will account for 75% of total mobile data traffic
by 2020.
Popular video providers such as YouTube and Netflix now
encrypt a large part of video content. Trend indicates most
video traffic will be encrypted soon.
Wireless carriers (e.g. Verizon, AT&T) want to monitor from
encrypted video data the Quality of Experience (QoE) on video
delivery.

* Is the video in HD or not?

* Has the video play ever been frozen (stall) or not? If so, when?

* How is the client buffer status? (e.g., empty, full, seconds of video
in buffer)

19
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Buffer occupancy (s)

Real applications

* Analysis of encrypted wireless video stream

* In collaboration with New York University, Columbia University
and Nokia Bell Labs.

* As the initial step, NYU identified the three buffer status to
classify: Filling the Buffer (F) vs. Steady (S) vs. Draining the
Buffer (D).

*  However, when the network conditions is compromised, the
buffer status could become “ugly”. It brings down the
performance of classifiers.
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Real applications

* Analysis of encrypted wireless video stream

* Concept Drift: detect the “good” to “congested” drift of
network condition, and apply a different classifier for a
different network condition.

0.1 0.088F
g 0.08} § 0.086
= =
£ £ 0.084
£ 0.06} £
8 8
= = 0.082r
S 0.04f 5
-1% % 0.08
H_% 0.02¢ :% 0.078
O (@)
0 J ‘ , , , oor6t . { . .t ]
0 200 400 600 800 1000 200 220 240 260 280 300 320
Time step Time step
Accuracy (%)
Model Overall Steady Stage Buffering Stage
Unified Model 56.36 70.62 38.87
PCM 59.02 71.36 43.31
Relative Improvement | 4.72% 1.04% 11.42%
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Future work

* Open toolbox to support various state-of-the-art
concept drift detection methods
* 13 methods in total.
* Matlaband R
¢ 2019 Spring
* Improve Hoeftding’s inequality
* Relaxi.i.d. assumption

23
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